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Nonlocal charge transport mediated by spin diffusion in the spin Hall effect regime
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A nonlocal electric response in the spin Hall regime, resulting from spin diffusion mediating charge con-
duction, is predicted. The spin-mediated transport stands out due to its long-range character, and can give
dominant contribution to nonlocal resistance. The characteristic range of nonlocality, set by the spin diffusion
length, can be large enough to allow detection of this effect in materials such as GaAs despite its small
magnitude. The detection is facilitated by a characteristic nonmonotonic dependence of transresistance on the
external magnetic field, exhibiting sign changes and decay.
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I. INTRODUCTION

The spin Hall effect (SHE) is a phenomenon arising due
to spin-orbit coupling in which charge current passing
through a sample leads to spin transport in the transverse
direction.! This phenomenon has been attracting continuous
interest, partially because of the rich physics and diversity of
SHE mechanisms? and partially because SHE enables gener-
ating spin polarization on a micron scale and electrical de-
tection of spin-polarized currents, which are the key ingredi-
ents of spintronics.> Theoretically, two main types of SHE
have been studied: (i) extrinsic, being due to spin-dependent
scattering on impurities' and (ii) intrinsic, arising from the
spin-orbit terms in the band Hamiltonian.* Both extrinsic and
intrinsic SHE have been detected experimentally’~® using
optical techniques. Reciprocal SHE (that is, transverse volt-
age induced by a spin-polarized current) was observed in Al
nanowire,’ where ferromagnetic contacts were used to inject
spin-polarized current into the sample, and in Pt film.'?

Here we show that the SHE relation between charge cur-
rent and spin current leads to an interesting spin-mediated
nonlocal charge transport, in which spins generated by SHE
diffuse through the sample and, by reverse SHE, induce elec-
tric current elsewhere. The range of nonlocality of this
charge transport mechanism is on the order of the spin dif-
fusion length €,=VD,7,, where D, is the spin diffusion con-
stant, and 7, is the spin relaxation time. The observation of
such nonlocal charge transport due to SHE can be made fully
electrically, which represents a distinct advantage compared
to the methods relying on the sources of spin-polarized
current.”! Although the nonlocal electrical signal, estimated
below, is small, by optimizing the multiterminal geometry
one can enhance the nonlocal character of the effect and
easily distinguish it from the Ohmic transport.

The main distinction of the spin-mediated electrical effect
considered in the present work from related ideas discussed
earlier''"'* is that here we identify a situation in which the
spin-mediated charge transport, due to its nonlocality, domi-
nates over the Ohmic contribution. In particular, Refs. 11 and
14 considered a correction to the bulk conductivity resulting
from spin diffusion and SHE, detectable by its characteristic
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contribution to magnetoresistance. In Ref. 13 a spin-assisted
electrical response was predicted in a multiterminal mesos-
copic system, studied numerically in a weak disorder regime
with the mean free path comparable to the system size.

In this paper we shall analyze systems with short mean
free path relevant for current experimental investiga-
tions,>’~1% focusing mostly on the extrinsic SHE regime. The
geometry that will be of interest to us is a strip of width w
narrow compared to the spin diffusion length €, with current
and voltage probes attached as illustrated in Fig. 1. The non-
local charge transport gives rise to transresistance: a voltage
Vi, across the strip measured at distances x~ ¢, from the
current source (S) and drain (D). exponentially on the length
scale w/m away from the source, the spin-dependent voltage
can easily exceed the spin-independent contribution. This is
in contrast to Refs. 11, 13, and 14 where the predicted spin-
dependent fraction of conductance is small.

In addition, the proposed setup allows one to investigate
interesting spin transport phenomena predicted in the intrin-
sic SHE regime: the drift-induced spin precession!® and
quenching of spin relaxation in quasi-one-dimensional
(quasi-1D) systems.'® As discussed below, these phenomena
are directly manifest in the transresistance.

Below we demonstrate that the spin-mediated nonlocal
effect exhibits a characteristic oscillatory dependence on the
in-plane magnetic field resulting from spin precession. At a
distance |x| ~ €, from the source it will oscillate and decay on

o1t

FIG. 1. Nonlocal spin-mediated charge transport schematic.
Charge current j,. applied across a narrow strip generates, via SHE,
a longitudinal spin current j,. After diffusing over a distance x
~{,>w, the spins induce a transverse voltage V|, on probes 1 and
2 via the reciprocal SHE. For a narrow strip, w<<{,, the spin-
mediated nonlocal contribution exceeds the Ohmic contribution that
decays as e~ ™",
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the magnetic field scale wz~ 1/7,, where wy is the electron
spin Larmor frequency. This oscillatory field dependence can
be used in experiment to extract parameters such as the spin
diffusion length and spin Hall coefficient.

The rest of the paper is organized as follows. In Sec. II we
introduce our transport model, find the spin and charge cur-
rent densities, and obtain an analytic expression for the non-
local resistance. In Sec. III we use this analytic result to
estimate the magnitude of the nonlocal resistance for several
materials that exhibit extrinsic SHE. In Sec. IV we study the
dependence of the nonlocal resistance on the in-plane mag-
netic field. The nonlocal transport for materials with intrinsic
SHE is briefly discussed in Sec. V. Finally, Sec. VI summa-
rizes our results.

II. MODEL

We consider, as a simplest case, an infinite narrow strip,

—o<x< +oo, —w2<y<wi2 (w<{,),

as illustrated in Fig. 1. We assume, without loss of generality,
that current source and drain leads are narrow, connected to
the sample at the points (0, = %w).

The electric potential in such a sample, described by
Ohmic conductivity o, can be found as a solution of the
two-dimensional (2D) Laplace equation with the boundary
condition j,(x,y=* %w):l&(x), where [ is the external cur-
rent. Solving it by the Fourier method, we find

Ie™ sinh(ky)

qo(x,y):—Jdk (1)

N .
2mok cosh(Ekw)

In what follows we will need the electric field tangential
component at the boundaries of the strip, E, . (x)
=—0d,¢+(x), where + and — signs correspond to the strip up-
per edge (y=+w/2) and lower edge (y=—w/2). This com-
ponent of the electric field is found from potential (1) at the
boundaries of the sample as

1

21 sgn x
Epa()= 7 05 3 oo g ———
’ wo sinh X

WO odd n>0

(2)

where X=mx/w. Potential difference between the strip edges,
Ap=¢,(x)—¢_(x), evaluated in a similar way, decreases as
e at x| = w.

Below we focus on the case of extrinsic SHE, when the
k-linear Dresselhaus and Rashba terms in electron spectrum
are negligible. Then the spin fluctuation generated by SHE
evolves according to the diffusion equation,

1
Dsﬂzs(x,)’)—:(xa)’)—:S(x’)’)=0, (3)

where s is the z component of the spin density, D; is the spin
diffusion coefficient, and 7, is the spin relaxation time. The
source term Z in Eq. (3) describes spin current arising due to
the spin Hall effect,
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Ey(x.y) =V ji= 0o B ap,Ep(x.y)]. (4)

where f3; is the spin Hall conductivity. In the presence of the
k-linear Dresselhaus and/or Rashba interaction, spin trans-
port is more complicated due to spin-orbit (SO) induced pre-
cession and dephasing.!”!8 The modification of the nonlocal
electric effect in this case will be briefly discussed at the end
of the paper.

Since VX E=0, the spin current source [Eq. (4)] vanishes
in the bulk and is only nonzero at the strip boundaries,

1 1
E(x,y) = Bﬁ(y - EW>Ex,+(x) - Bﬁ(y + 5W>Ex,_(X)-
(5)

The distinction from the Ohmic contribution becomes most
clear when our strip is relatively narrow, w<<¢,. In this case
the spin current and spin density induced by SHE are ap-
proximately constant across the strip. Thus we can integrate
over y and solve a one-dimensional spin diffusion problem.
Suppressing the y dependence in Eq. (3), we take E(x)
= B.S'E)C,+('x) - BSEX,—('X) .

Solution of Eq. (3) in the Fourier representation reads,

Pk

YT

400
Pi= LJ dxE(x)e™™ . (6)
27)
This expression can be simplified by noting that E(x) is an
odd function of x and that the integral over x converges at
|x|=w, while we are interested in the harmonics with much
lower k~1/€,<<1/w. Sending k to zero in the integral, we
obtain

1 kG
T aDK+ 1T,

™)

Sk

where the spin dipole G is given by

G=f = (o)xdx = - B 8)

0 20

[we used Egs. (2) and (5) to evaluate this expression].
Now we can find the spin current

Jx(x) == Dsﬁxs(x)’ (9)

where the spin density s(x) is obtained by the inverse Fourier
transform of Eq. (7). Using Eq. (8), we find

IBw e,
20¢

J(x) = (10)

s

(this expression is valid for x not too close to the source,
|x|=w). Expression (10) gives the net spin current rather
than the spin current density, as we have been solving a 1D
diffusion problem. This spin current generates, by reverse
SHE, a voltage across the sample,

— BL'JS(‘x) — IBC'BS_We—lx‘/es

8V(x) o 20,07

(11)

where 3. describes charge current arising in response to spin
current, jo= Bcsaﬁjf. Relating S, to the spin Hall conductiv-
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ity as B,=f,/ o, we write the nonlocal response [Eq. (11)] as
a transresistance,

2
Rnl(x)=5VT(X)= %(%) %e—\XI/Q. (12)

We emphasize that for the extrinsic SHE,' the spin current is
established on the length scale of the order of the electron
mean free path €, here taken to be much smaller than the
strip width w. Thus the inhomogeneity of the charge current
Jo (Fig. 1) on the length scale set by w does not affect our
analysis. The estimate [Eq. (12)] for the nonlocal voltage is
therefore accurate as long as w> €.

III. ESTIMATES OF THE NONLOCAL EFFECT
FOR VARIOUS MATERIALS

We now compare the magnitude of the nonlocal contribu-
tion [Eq. (12)] for several materials where extrinsic SHE has
been observed. For the transresistance [Eq. (12)] to be large,
one would like to have a material with a large ratio 5,/ o, and
a large spin diffusion length €,. For Si-doped GaAs with
electron density n=3X10'"® cm™, the three-dimensional
(3D) charge conductivity, spin Hall conductivity, and spin
diffusion length, reported in Refs. 5 and 7, are given by
o3p=~2.5%107 Q7' um™!, Bsp=5%10"7 Q' um™!, and
€,~9 pm. Our two-dimensional quantities o and S, are re-
lated to the 3D quantities as o=o3pw, and B,=L;3pw,,
where w, is the sample thickness. Taking w.=2 um,>’ and
choosing the sample width to be w=0.5 um, we estimate the
transresistance [Eq. (12)] as

Ry(x) =2 X 107 X e (Q). (13)

Although small, it by far exceeds the Ohmic conduction con-
tribution which at a distance x is proportional to o lem ki,
Indeed, for a typical x= €, the Ohmic contribution is negli-
gibly small: ¢~/ = 757~ 107248,

In the case of InGaAs, the 3D charge conductivity and 3D
spin Hall conductivity have values similar to those quoted
above for GaAs (see Ref. 5), o3p=~2.5%107 Q7' um™!
and By;p=~5X10"7 Q' um™!, while spin diffusion length
is considerably shorter, €,;~2 um. Therefore, in order for
the nonlocal voltage [Eq. (12)] at |x|~¢, to exceed the
Ohmic contribution, proportional to o™ the sample
width w must satisfy w<<7€,/[2 In(o3p/ B3p) ] =360 nm.

Another material exhibiting extrinsic SHE is ZnSe.® For
carrier concentration n=9X 10'® ¢m™ the 3D charge and
spin  Hall conductivities are given by o3p=2
X107 Q7' um™ and Bip=3x10"% Q' um™!, having
the ratio By;p/ 03p=1.5X 10~ about ten times smaller than
in GaAs and InAs. The spin diffusion length in this material
is comparable to that in InAs, €,~2 um.

Extrinsic SHE has been also demonstrated in metals, Al
(see Ref. 9) and Pt (see Refs. 19 and 20). In Al, Bup=3
X107 Q7! um™!, the ratio of spin Hall and charge conduc-
tivities is Byp/osp=1X107*, while the spin diffusion
length is €,~=0.5 wm. Therefore, to separate the spin effect
from the Ohmic contribution, one needs to fabricate samples
with w<7€,/[2 In(o3p/ B3p)]=85 nm. Although the ratio
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Bsan/ 03p=0.37 is large in Pt, the observation of the nonlo-
cal effect in this material is hindered by its extremely small
spin diffusion length, €,~10 nm.?! We therefore conclude
that GaAs systems seem to provide an optimal combination
of parameter values for the observation of the nonlocal trans-
port.

IV. EFFECT OF AN IN-PLANE MAGNETIC FIELD

We now analyze the effect of an in-plane magnetic field
on the transresistance [Eq. (13)]. In the presence of magnetic
field, spin diffusion equation (3) is modified as

DS&ZS—E—§+[(»BXS]=O, (14)
s

where wp=guB is the Larmor precession frequency, up
=9.27 X 1072* J/T is the Bohr magneton, and g is the g fac-
tor. As we shall see below, the interesting field range is wp
=<D,/w>. Since in this case the variation in spin polarization
across the strip is negligible, we can again integrate over the
y coordinate and solve a one-dimensional diffusion problem.
For the magnetic field parallel to the x axis, Eq. (14) takes

the following form in the Fourier representation:

glk)y O 0 i =i
0 gk) wg ||si]|=-|E; | (15)
0 -wp gk |\s B

where g(k)=D*+1/7,. For the situation of interest, when
only the z component of the source E is nonzero, the solu-
tion for s* is given by
EUDK +1/1,)
(DJ*+1/7,)* + wpy

sp= (16)
Following the same steps as in the absence of magnetic field
(notice that the source term =¢ is not affected by the mag-
netic field), we obtain the spin current,

1
B el e ), (17)
20

J(x) =

where g,=V1+iwgT,/{,.
The nonlocal response due to the voltage induced by the
spin current [Eq. (17)], found as 6V(x)=f—(;Js(x), is

VW) _ BBy,
1 2

Ry(x) = elg.e7 ). (18)
This expression is simplified in the limit of strong magnetic
field, wp7,> 1, by factoring an oscillatory term,

IB.Bwn . [kl w\
R, (x) = WSH](CTJ-FZ e WS, (19)

where 7=vwy7,/2. Compared to the result found in the ab-
sence of magnetic field, Eq. (11), the nonlocal voltage 6V(x)
is amplified by a factor of \27, decaying on a somewhat

shorter length scale £=¢,/ 7.
The dependence of R, [Eq. (18)] on the in-plane magnetic
field is illustrated in Fig. 2. Enhancement of 6V at weak
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FIG. 2. (Color online) Nonlocal resistance R,=38V(x)/I, Eq.
(18), in units of Ry=8,B8,w/20>{, vs the in-plane magnetic field for
several values of x (see Fig. 1). (Here wp and 7, are the electron
spin Larmor precession frequency wp and dephasing time.) The
nonlocal response increases at weak fields, wg7,={,/|x|, changes
sign at wp7,~{,/|x|, and is suppressed at wgT, =€ /|x|, simulta-
neously exhibiting oscillations.

fields, wp7,=<1, is followed by a sign change at w7~ 1,
and suppression at wp7,= 1. The zeros of 6V can be found
approximately for €= |x| from Eq. (19),

Wp Ty = 27 (n - 1/4)% /|x

s

with integer n>0. [The condition €,/|x|=1 ensures that
w,7,> 1, necessary for Eq. (19) to be valid.]

For GaAs, g=—0.44 and 7,~10 ns (see Ref. 7), and
therefore the field necessary to observe the oscillations and
suppression of R, at |x|~ €, is quite weak:

B~B,.=

~2 mT. (20)
8MBT

The transresistance measured at |x|=¢, will change sign at

the fields B=~11.1 mT,60.4 mT,..., decreasing in magni-

tude as illustrated in Fig. 2.

V. NONLOCAL TRANSPORT IN MATERIALS
WITH INTRINSIC SPIN HALL EFFECT

Nonlocal electric transport can result not only from the
extrinsic spin scattering mechanisms discussed above but
also from the intrinsic spin-orbital effects. Below we present
an estimate of the nonlocal effect for a 2D electron gas with
Rashba spin-orbit coupling, Hyo=aZ- (0" X p), where o and
p are electron spin and momentum, Z is the unit normal
vector, and « is SO interaction constant. Potential scattering
by impurities leads to Dyakonov-Perel spin relaxation with
spin diffusion length €,=%/m.a, where m, is the effective
electron mass. In such a system, unlike extrinsic SHE, elec-
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tric field induces spin density rather than spin current.'? In
the narrow strip geometry (Fig. 1) the charge current across
the system gives rise to a spin density source Z(x,y)
~ a(pp7)?em, 072X j.(x,y), where p is Fermi momentum,
and 7 is the momentum relaxation time. Spin transport with
such a source, described by Eq. (13) of Ref. 17, exhibits
precession induced by drift. This yields a helix-shape
distribution' with the s, component oscillating and decaying
on the length scale of order €.

The spin density, via reverse SHE, creates electric current,
i ~ea3p%7-zf X's, giving rise to transresistance

2

h_7-2> KRC eik\x\’ (21)
m;) ot

Rnl(x) ~ (

where k=k"+ik", k' ~k"~1/€, is a complex wave vector.
The transresistance as a function of x exhibits oscillations,
similar to those described by Eq. (18).

For a GaAs quantum well with electron density n
=10"> cm™2, mobility =10 cm?/V s, spin-orbit splitting
apr=100 wV, and width w=0.5 um, Eq. (21) gives R,
~ 107 Q, which is somewhat larger than the Ohmic contri-
bution ~107° € at x=€,~3 um. However, larger values of
the mean free path in quantum wells of ~1 um enhance
nonlocality of the Ohmic contribution. This may hinder ob-
servation of spin-mediated transport despite a larger value of
R, (cf. Ref. 13).

VI. SUMMARY

In conclusion, spin diffusion in the SHE regime can give
rise to nonlocal charge conductivity. A relatively large non-
locality scale, set by the spin diffusion length, can be used to
separate the spin-mediated transresistance from the Ohmic
conduction effect. In a narrow strip geometry, the transresis-
tance has a nonmonotonic dependence on the external in-
plane magnetic field, exhibiting multiple sign changes and
damping. Our estimates indicate that observation of the non-
local conductivity is possible for currently available n-doped
GaAs samples. In the intrinsic SHE systems, the nonlocal
conductivity can be used to probe interesting spin transport
phenomena, such as drift-induced precession'® and quench-
ing of spin relaxation by quasi-1D effects.!®
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